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The magnetic phase diagram of the quarter-filled generalized Wigner lattice with nearest-neighbor and
next-nearest-neighbor hoppings, t1 and t2, is explored. We find a region at negative t2 with fully saturated
ferromagnetic ground states that we attribute to kinetic exchange. Such interaction disfavors antiferromag-
netism at t2�0 and stems from virtual excitations across the charge gap of the Wigner lattice, which is much
smaller than the Mott-Hubbard gap �U. Remarkably, we find a strong dependence of the charge structure
factor on magnetism even in the limit U→�, in contrast to the expectation that charge ordering in the Wigner
lattice regime should be well described by spinless fermions. Our results, obtained using the density-matrix
renormalization group and exact diagonalization, can be transparently explained by means of an effective
low-energy Hamiltonian.
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I. INTRODUCTION

In a Wigner lattice �WL�, long-range Coulomb repulsion
dominates over the kinetic energy of electrons and leads to
strong and well-defined charge order.1 Originally introduced
for the electron gas with a homogeneous neutralizing back-
ground, this concept was generalized to electrons on a lattice
by Hubbard.2 Evidence for quasi-one-dimensional �1D�
Wigner lattices has been found in organic3–6 and
anorganic7–10 chain compounds, nanowires,11 and in carbon
nanotubes.12 Low-dimensional WLs are favored by reduced
screening.2,13 Moreover, strong correlations induced by large
local Hubbard interaction U suppress screening further and
protect the long-range nature of the Coulomb repulsion.10 It
is, however, not straightforward to distinguish a true WL
from a quantum-mechanical charge-density wave �CDW�
simply on the basis of the periodicity of the charge modula-
tion. In fact, it turns out that the modulation period of the
WL coincides with that of the 4kF CDW.2,4,14–16 This may be
surprising as the microscopic origin of the charge order in
the two cases is fundamentally different.6 �i� The mechanism
for the WL is based solely on the classical Coulomb repul-
sion and is dependent only on the charge of electrons and not
on their fermionic nature. The periodicity follows simply
from the configuration of charges with minimal energy. �ii�
Instead, the quantum-mechanical CDW depends on the
Fermi-surface topology and the instability and modulation
reflects the Fermi momentum kF.

If we allow for nearest-neighbor �NN� and next-nearest-
neighbor �NNN� hoppings, t1 and t2, we arrive at an even
more interesting model which, depending on the relative size
and sign of t1 and t2, may have an electron dispersion with
two minima instead of one.17,18 Actually, it has been pro-
posed that the edge-sharing CuO chain compounds are de-
scribed by such models with �t2�� �t1�.10 It is then immedi-
ately obvious that in the case of a four-Fermi-point topology
the periodicities of WL and CDW no longer coincide. We
note that the experimentally observed charge modulations in

the edge-sharing compounds Na1+xCuO2 �Refs. 10 and 19–
21� are strong and their periodicity consistent only with that
of the WL. Another possible type of instability in the pres-
ence of strong correlations, namely, the 2kF Peierls and spin-
Peierls modulations,16,22 which requires a distortion of the
lattice, appears to be ruled out in these systems. Doped edge-
sharing chains are also the building blocks of the
Ca2+xY2−xCu5O10 �Refs. 9 and 23� and the Sr14−xCaxCu24O41
�Refs. 7, 8, and 24� systems, and pronounced charge order
has been observed in these compounds as well.

Here we shall investigate the intrinsic mechanisms for the
magnetism of generalized Wigner lattices. It is well known
that NNN hopping t2 has nontrivial consequences for mag-
netism in the 1D Hubbard model at general filling and may
lead to ferromagnetic �FM� states in certain cases.25–29 It
should be kept in mind that, according to the Lieb-Mattis
theorem,30 ferromagnetism is excluded at any filling in the
1D Hubbard model with NN hopping �i.e., t2=0�. For the 1D
Hubbard model with NN and NNN hoppings, Pieri et al.27

and Daul and Noack28 found that ferromagnetic ground
states appeared above a critical U in those regions of the t1-t2
plane where four Fermi points exist. These results were ob-
tained in the metallic regime where the relevance of Fermi-
surface topology is suggestive; however, the implications for
the localized electrons of a Wigner crystal are unclear.

The magnetism of generalized WLs is typically discussed
in terms of effective Heisenberg models where the position
of the spins is dictated by the charge order pattern of the
WL.10,31,32 The prevailing superexchange interactions are an-
tiferromagnetic. However, there are also ferromagnetic cou-
plings in edge-sharing chains due to the Hund interaction at
the oxygen ligands that may be larger than the AF interac-
tions and render, e.g., the nearest-neighbor interaction J1
ferromagnetic.10,33,34 These features lead to frustration, and
the resulting helical spin states have been observed in the
spin-1/2 edge-sharing chain compounds LiCu2O2 �Ref. 35�
and NaCu2O2.36–38

In this paper, we show that for a Wigner crystal at quarter
filling, there is another intrinsic mechanism that may lead to
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ferromagnetism. By means of a density-matrix
renormalization-group �DMRG� study of the t1-t2 Hubbard-
Wigner model, which includes local Hubbard U and long-
range Coulomb interactions Vl=V / l, we show that there is a
regime of fully polarized FM states at negative t2. Subse-
quently, we derive an effective magnetic Hamiltonian for the
Wigner-lattice regime, i.e., �t1� , �t2��V�U, and show that
the emergence of ferromagnetism can be explained by an
effective kinetic exchange mechanism mediated by NNN
hopping t2. The associated magnetic exchange constant
�t1

2t2 /�0
2 depends on the sign of t2 and therefore kinetic ex-

change is found to favor ferromagnetism for negative t2 and
antiferromagnetism for positive t2. Kinetic exchange in-
volves excitations across the charge gap �0 of the WL but not
across the usually much larger Mott-Hubbard gap �U, as is
the case for AF superexchange or for many realizations of
FM three-particle ring exchange.39 The charge gap �0 of the
generalized WL depends sensitively on the commensurabil-
ity with the underlying crystalline lattice. At quarter filling
this gap is particularly large �0�V /2.

If the charge gap �0�V /2 of the WL is much larger than
the hopping amplitudes, t1 and t2, and any expected magnetic
couplings, a separation of charge and magnetic energy scales
appears straightforward. Hence, charge ordering in a WL is
usually discussed in terms of spinless fermions. Magnetism,
e.g., antiferromagnetic �AF� superexchange or FM Hund’s
rule10 and three-site ring exchange,40 is then treated as a
perturbation given a particular charge-ordering pattern. One
would, however, not expect the magnetic order to have a
strong impact on the underlying charge order because the
magnetic energy scale is so much smaller than the dominant
Coulomb repulsion for all these processes.41 The motivation
for this work was the initial observation that the charge struc-
ture of the WL measured by the charge structure factor N�q�
at q=� is strongly affected by electron spin, in disagreement
with the calculation for spinless fermions. Yet there is a re-
gion in the t1-t2 phase diagram at negative t2 where N��� is
the same for spinless fermions and for fermions with spin.
Moreover, N��� does not depend on t2 in that parameter
range. The obvious conjecture is that the ground state should
be fully spin polarized in this regime.

We show here that due to the kinetic exchange mecha-
nism, these FM ground states emerge and that the kinetic
exchange processes have a surprisingly strong impact on the
charge ordering in spite of the classical origin of the WL.
Indeed, the AF state at t2�0 has dramatically weaker charge
order than the ferromagnetic or spinless states. While the
charge order is reduced �t2 for positive t2, it does not depend
on t2 in the FM regime t2

a� t2� t2
b with negative t2. Remark-

ably, for negative t2 values below t2
b, AF reappears; yet the

charge order then increases with increasing modulus �t2�. The
boundaries of the FM phase follow from the effective spin
Hamiltonian as t2

a�−3t1
2 /U and t2

b�−�U /�0
2�t1

2 and match the
magnetic phase boundaries found using the DMRG. This pe-
culiar behavior is due to a purely quantum effect involving
destructive interference of kinetic exchange processes in the
FM state due to the Pauli principle and constructive interfer-
ence for the AF case.

The paper is organized as follows. After introducing the
Hubbard-Wigner Hamiltonian in Sec. II, we present results

for the charge structure factor for spinless fermions interact-
ing via long-range Coulomb interaction in Sec. III. We shall
see that the results for spinless fermions coincide with results
for electrons with spin in some region of the t1-t2 phase
diagram, while they are substantially different in other parts
of the phase diagram. We derive an effective Heisenberg
Hamiltonian in Sec. IV and show that the magnetic phase
diagram, i.e., the appearance of the fully saturated FM phase
and its phase boundaries, can be naturally explained. Next
we show that the peculiarities found numerically for the
charge structure factor find a straightforward analytical de-
scription in the framework of the effective Hamiltonian. Fi-
nally, we discuss and summarize our results in Sec. V.

II. HUBBARD-WIGNER MODEL

The Hubbard-Wigner Hamiltonian investigated in this pa-
per is motivated by the one-dimensional edge-sharing
CuO-chains.10,42 Edge-sharing chains are formed by CuO4
squares just as in the CuO planes of the high-Tc compounds;
but these units are differently linked. The edge-sharing ar-
rangement leads to small nearest-neighbor hopping matrix
element t1 due to the almost 90° Cu-O-Cu coordination and
some contribution to t1 stems from direct Cu d-d overlap.43

Moreover, the structure leads to a comparatively large matrix
element t2 between second-neighbor Cu ions stemming from
a Cu-O-O-Cu path.33 Thus edge-sharing chains, in contrast to
the 180° bonded high-Tc cuprates, fulfill the fundamental
criterion for a WL, namely, that the kinetic energy is small
compared to the nearest-neighbor Coulomb interaction, in an
optimal way. While the Coulomb repulsion is screened by a
static dielectric constant in these insulators, the one over dis-
tance decay of the interaction is preserved and must be taken
into account. Truncation of the interaction may have serious
consequences for the charge-order pattern of generalized
WLs �Ref. 2� as well as for their charge excitations.42,44

The relevant states of Cu that need to be included in a
low-energy model are: Cu3+ or, more precisely, the
Cu d9-ligand hole singlet state, Cu2+ with spin-1/2, and Cu1+

corresponding to the filled d shell. These states can be ex-
pressed in the frame of a single-orbital Hubbard model with
0, 1, or 2 electrons per site. Thus we consider the Hubbard-
Wigner Hamiltonian where the extension Wigner indicates
that the long-range Coulomb interaction is included. This
model has the form,10,42

H = − t1�
i,�

�ci,�
† ci+1,� + H.c.� − t2�

i,�
�ci,�

† ci+2,� + H.c.�

+ U�
i

ni,↑ni,↓ + �
l=1

L/2

Vl�
i

�ni − n̄��ni+l − n̄� , �1�

where the operators ci,�
† �ci,�� create �destroy� electrons with

spin � at lattice site i, with i=1. . .L. The local density is
given by ni,�=ci,�

† ci,� and ni=ni,↑+ni,↓ and the average den-
sity is n̄=Ne /L for Ne electrons. The kinetic-energy term
includes NN hopping t1 and NNN hopping t2, which are both
typically much smaller than either the on-site Coulomb re-
pulsion U or the NN-Coulomb interaction V that param-
etrizes the long-range Coulomb interaction Vl=V / l. In the
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case of finite rings of length L, we truncate the 1 / l behavior
at L /2, which is equivalent to replacing V / l by
max�V / l ,V / �L− l�� for 0� l�L. We have verified that small
modifications to the 1 / l behavior do not affect our results. In
fact, truly long-range Coulomb repulsion is not crucial for
the results presented here. At quarter filling, both the FM
kinetic exchange and the weakened charge order can also be
seen for on-site U and NN Coulomb repulsion V1 only. In the
following, we consider the model with long-range Coulomb
interaction and use the NN Coulomb repulsion V1=V as unit
of energy. Without loss of generality, t1 is chosen to be posi-
tive. The Hamiltonian in Eq. �1� contains two ingredients
that have been shown to favor FM correlations in Hubbard-
type models: Strong on-site and longer-range Coulomb
repulsion45 and, perhaps more importantly, NNN
hopping.26–28,46 In this paper we address the most transparent
instance of the WL, namely, quarter filling n̄=0.5 for Hamil-
tonian �1�. We explore the magnetic properties within the
WL regime, i.e., t1 , �t2��V�U, which have not been ex-
plored before, and find FM ground states in a region of the
t1-t2 phase diagram with negative t2. Quite unexpectedly, we
also find a strong influence of magnetism on WL charge
order. For comparison, we will first discuss the charge order-
ing for spinless fermions at half filling, corresponding to the
fully spin-polarized case with n̄=0.5. At small t1 and t2, the
alternating charge order is very rigid and its lowest charge
excitations are domain walls �DWs� with fractional
charge.2,47,48 DWs can be induced in a perfectly ordered state
via NN hopping t1, as schematically illustrated in Fig. 1.
Their creation costs energy of �0�V /2 in the case of long-
range Coulomb interaction, and once created they can move
easily through the lattice via t1 hopping processes. Their
fractional charge 	1 /2 is responsible for the distinctive WL
features in the optical conductivity and in
photoemission.42,44,49

We investigate this model with exact diagonalization �ED�
for spinless Fermions and chains of up to L=28 sites. We use

the Lanczos algorithm with a numerical accuracy of �10−6

and check its validity by use of full diagonalization for up to
18 sites. These ED calculations were done for both the
ground state �T=0� and for small but finite temperatures �T
=10−4–10−3� leading to practically identical results at small
t1 and t2 because there is a finite charge gap of �0�V /2,
which blocks changes at temperatures with an energy scale
smaller than this. For electrons with spin, we use the DMRG
with chains of L=24,32,40 and find results consistent with
the ED for spinless fermions. In the DMRG, we keep 200–
1200 states at each step, performing up to 10 finite-size
sweeps, and the neglected weight is 
10−5. For parameters
with a FM ground state, the energy obtained with the DMRG
agrees with the ED result.

III. CHARGE ORDER

Increasing the NN hopping t1 gradually reduces the
charge ordering42 until, at t1�0.2 V, the charge gap
vanishes.13 This is reflected in the charge structure factor,

N�q� = 	�−q�q
, with �q = 1/Ne�
r

exp�− iqr�nr, �2�

which, for perfect charge alternation, is peaked at q=� with
N���=1. As can be seen in Fig. 2, the results for spinless
fermions, obtained using Lanczos diagonalization, show that
N��� is strongly reduced even before the gap vanishes, giv-
ing a weaker charge-density wave. We find that, for spinless
fermions, the melting of WL charge order with t1 does not
depend on t2. The behavior of N��� can be described ana-
lytically because only few DWs are present at small t1. To
leading order, virtual DW excitations contribute

Ec � − Ne2t1
2/�0 �3�

to the ground state energy. With Ne=L /2, we obtain

N��� �
1

1 + �4t1/��2 , �4�

given the charge gap �=�0�V /2. This expression is indi-
cated by the dashed line in Fig. 2 and agrees with the nu-
merical data.
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FIG. 1. �Color online� Schematic depiction of relevant �t1
2t2 /�0

2

kinetic exchange processes. We start from perfect charge order �a�
and �e�, where circles denote empty sites �Cu3+ atoms in
Na1+xCuO2�, and arrows denote occupied sites �Cu2+�. NN hopping
t1 induces excitations �a→b and e→ f� with two domain walls
�dashed lines� and cost �0. Two different t2 processes, one with �f
→g� and one without �b→c� electron exchange, become possible.
For FM spins �triplet channel� or spinless fermions, however, these
two processes �a→d� and �e→h� cancel exactly because of the
relative Fermi sign in the next-nearest-neighbor hopping process.
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FIG. 2. �Color online� Charge structure factor N�q� for q=� as
a function of nearest-neighbor hopping t1. The dotted line for spin-
less fermions is from ED calculations with L=28; symbols were
calculated using the DMRG with L=24 for electrons with spin.
Analytic results are obtained from Eq. �4� with �=�0 �FM� and �
=�0−2t2 �AF�, respectively.

MAGNETISM OF ONE-DIMENSIONAL WIGNER… PHYSICAL REVIEW B 78, 205115 �2008�

205115-3



In marked contrast to the gradual change that occurs with
t1, NNN hopping t2 is frustrated for spinless fermions until
N��� drops sharply at a level-crossing transition at t2

c

�0.15 V �Ref. 42� �see also Fig. 3�. At the level crossing,
the ground state changes fundamentally; N�q� develops a
broad continuum with a maximum between � and � /2
�moving to � /2 at large t2� rather than at �. Just as t2 does
not influence how charge order weakens with t1, the level-
crossing transition driven by t2 is hardly affected by t1. This
can be seen by comparing the t1=0.02 and 0.07 V curves for
spinless fermions in Fig. 3. Consequently, the WL phase is
bounded by vertical and horizontal lines in the t1-t2 plane
�see Fig. 4�.

While the transition between the two CDW phases with
q=� and q�� depends on both t1 and t2, it is remarkable
that the WL is never affected by the combination of hopping
processes. We would actually expect some cooperative ef-
fects between t1 and t2 because NNN hopping is no longer

frustrated in the presence of t1 �see Fig. 1�. Due to the DW
delocalization, �b↔c�, two-DW states should gain energy
with t2, and nonzero t2 should thus help destabilize the
charge ordering. The solution is found in the process shown
in �f↔g�: For spinless fermions �all arrows in Fig. 1 point-
ing up�, process �a↔e� and process �f↔g� are equivalent.
Since two electrons swap places in the second case, the re-
sulting Fermi sign leads to destructive interference and the
lowest-order processes associated both with t1 and with t2
cancel out.

After this discussion of the spinless model, we now turn
to electrons with spin. Due to the dominance of the Coulomb
repulsion and the classical nature of WL ordering, we might
not expect charge ordering to be affected significantly by the
spin degree of freedom as long as U
V. However, the be-
havior of N��� obtained using the DMRG for electrons with
spin indicates that there is a surprisingly strong influence
even for U=100 V. In contrast to spinless fermions, where
t2 does not affect the behavior of N��� as a function of t1, we
find the charge order to be considerably weakened at t2�0
for electrons with spin �see Fig. 2�. We can understand this
by considering the processes of Fig. 1. The states depicted in
�c� and �g� differ by their sequence of up and down spins.
Process �b↔c� is then no longer canceled by �f↔g�, as it is
for spinless fermions. Consequently, a kinetic-energy contri-
bution �t1

2t2 /�0
2 is no longer forbidden by the Pauli principle.

Our interpretation is corroborated by analytic consider-
ations. The additional DW motion due to t2 favors two-DW
states and changes the gap relevant to Eq. �4� from �=�0
�V /2 to �=�0−2t2. This leads to the dash-dotted line in
Fig. 2, which indeed describes the weakened charge order
seen in the DMRG at t2�0. For t2�0, however, the DMRG
results are described by the spinless gap �=�0. Since spin-
less fermions are equivalent to the fully polarized FM state,
this indicates ferromagnetism, see below. For U=4 V and
small t1
0.07 V, where AF superexchange �4t2

2 /U de-
stroys the polarized state, processes �t1

2t2 retain their impact
and strengthen charge order, see the full line in Fig. 2.

For fermions with spin, the sharp transition as a function
of t2 shown in Fig. 3 becomes asymmetric with respect to the
sign of t2. Even for very small t1=0.02 V, the cooperation
between t1 and t2 is enough to render the breakdown of the
WL charge order more gradual for t2�0 than for t2�0. For
t1=0.07 V, charge order is strongly reduced for t2�0, and
the sharp drop in N��� as a function of t2 has disappeared, in
stark contrast to the spinless model.

IV. MAGNETISM

One expects AF interactions for the WL �Ref. 41� due to
superexchange in the generalized Hubbard model. Yet our
observation that the charge structure factor at negative t2
agrees closely with results for spinless fermions �see Figs. 2
and 3� is already an indication that the ground state in this
regime is FM. This is indeed the case, and our DMRG stud-
ies in fact yield fully polarized ground states for some pa-
rameter sets at negative t2. As can be seen in Fig. 5, the FM
interval increases with t1.

In the following, we analyze the magnetic exchange by
using perturbation theory valid when t1 , t2�V�U. The ro-
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FIG. 3. �Color online� The charge structure factor N��� versus
t2. Note that it does depend on the sign of t2 for fermions with spin
and does not for spinless fermions. The results for spinless fermions
were calculated using exact diagonalization �L=18� and the results
for electrons with spin using the DMRG �t1=0.02 V, U=4 V, and
L=24; t1=0.07 V, U=100 V, and L=32�.
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FIG. 4. Phase diagram for spinless fermions determined from
the charge structure factor N�q� �see Eq. �2��. WL �dark gray�:
strongly charge-ordered WL with N����0.7. �-CDW �light gray�:
CDW with periodicity � but N����0.7. �This choice corresponds
approximately to the inflection point of N��� as a function of t1.� In
the white area, N�q� has its maximum at � /2�q��, at � /2 for
large t2. In the exact diagonalization, we take Ne=8 fermions on
L=16 sites.
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bust WL charge order leads to a modulated Heisenberg chain
with spins at every second lattice site. Magnetism is there-
fore described by an effective Heisenberg-type Hamiltonian,

HJ = J�
i
�Si · Si+2 −

1

4
nini+2
 , �5�

where i runs only over the even sites, where the L /2 spins
forming the WL are located. The total ground-state energy
then is E= 	HJ
+EFM, where EFM is the energy of the fully
spin-polarized state, which is equivalent to the ground-state
energy of spinless fermions. There are two distinct mecha-
nisms that contribute to the exchange constant J=JSE+JKE.
The first term is the usual superexchange, which involves a
doubly occupied intermediate state and therefore has the en-
ergy scale U in the denominator,

JSE �
4t2

2

U
+

12t1
4

�0
2U

+
8t1

2t2

�0U
+ . . . �6�

The second term JKE—denoted as the kinetic exchange—
arises from a spin exchange without any doubly occupied
sites, i.e., exactly from the same effect that weakens the
charge order for t2�0. Quantum interference between pro-
cesses �a↔e� and �f↔g� in Fig. 1 is destructive in the po-
larized FM state and constructive in the AF singlet, which
leads to an exchange energy,

JKE �
2t1

2

�0
� 1

1 − 2t2/�0
− 1
 �

4t1
2t2

�0
2 + . . . �7�

that depends on the sign of t2. The NN correlation function
of the 1D quantum antiferromagnet is given by �=−ln 2
+1 /4�−0.443, corresponding to 	Si ·Si+2
 for our modulated
chain. Inserting � as well as Eqs. �6� and �7� into Eq. �5�, we
obtain an analytic estimate, valid at small hopping, for the
energy of the AF state,

EAF �
L

2
�JSE + JKE��� − 1/4� + EFM. �8�

We compare this analytic result to numerical DMRG data for
t1=0.05 V and 0.07 V, in Fig. 5. This figure shows that the
analytic curves given by E0=min�EAF,EFM� closely model
the numerical ground-state energies for not-too-large t2 with
no fitting parameters. Moreover, the analytical boundaries of
the FM phase, namely, t2

a�−3t1
2 /U and t2

b�−�U /�0
2�t1

2, match
the magnetic phase boundaries found using the DMRG.

This may be compared with the boundaries in the t1-t2
plane describing the appearance of four Fermi points,
namely, t2�−�t1 /4�sec��n /4�2 and t2� �t1 /4�csc��n /4�2,
where n is the filling. For the quarter-filled case, i.e., n
=1 /2, only the first relation is of interest and yields the con-
dition −�� t2�−0.293t1 for the appearance of FM in the
Hubbard model, as observed in Refs. 27 and 28. It is perhaps
not surprising that the boundary relevant for the Hubbard
model, which is linear in t1, is completely different from the
boundaries obtained for the Wigner lattice, which are both
quadratic in t1. Nevertheless, ferromagnetism at quarter fill-
ing is found at negative t2 in both cases.

The phase diagram in Fig. 6 shows the total spin in the
ground state of a chain with L=24 for the range of t1 , t2
corresponding to the WL regime. The dashed lines represent
the analytical boundaries, t2

a and t2
b, of the FM region. Kinetic

exchange Eq. �7�—the only magnetic interaction surviving
for U→�—is AF for t2�0. For t2�0, JKE raises the energy
of the AF state over that of the FM state �see Fig. 5�. In the
FM state itself, this effective FM exchange is, ironically,
absent because the Pauli principle forbids the ring exchange
in the polarized state. At large negative t2 and not-too-large
U, AF superexchange �6� once again dominates.

The phase diagram Fig. 6 also contains contour lines
N�q=� , t1 , t2�=C, with the constant C=0.9,0.8, . . . ,0.4,
which indicate the strength of the alternating �q=�� charge
order of the Wigner lattice. In accordance with Figs. 2 and 3,
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FIG. 5. �Color online� Ground-state energy E0 for L=24 versus
t2 for U=4 V with t1=0.05 V �circles� and t1=0.07 V �triangles�.
Filled symbols indicate a fully polarize ground state and horizontal
lines the energy of the FM state at t2=0. The dashed and dash-
dotted lines are analytic results obtained from perturbation theory
�Eq. �8�� see text.
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we find that the charge order dies off most quickly in the
singlet states in the t2�0 region. The analytic contour lines
t1
c versus t2 following from Eq. �4� for t2�0 have the form,

t1
c �

1

4
��0 − 2t2��1/N��� − 1. �9�

They agree with the DMRG data, just as Eq. �4� agrees with
N��� in Fig. 2. Since our analytic result describes the unbi-
ased DMRG simulations so well, we conclude that the ki-
netic exchange indeed drives the suppression of charge order
in the AF regime for t2�0.

V. DISCUSSION AND CONCLUSIONS

We have investigated charge order and magnetism of the
1D quarter-filled Wigner lattice with nearest-neighbor and
next-nearest-neighbor hoppings. Starting from the regime
t1 , �t2��V with extremely strong alternating charge order sta-
bilized by the long-range Coulomb repulsion, we find that
increasing NN hopping t1 drives a crossover to a 4kF charge-
density state with weaker charge order but unchanged modu-
lation period, whereas increasing NNN hopping t2 leads to a
sudden level-crossing transition, destroying the alternating
charge order.42 For t1 , �t2��V and spinless fermions, we find
that there are no mixed processes involving both t1 and t2
because destructive interference removes the lowest-order
processes �t1

2t2. Consequently, the WL is bounded by a ver-
tical crossover line and horizontal phase transition lines in
the t1-t2 phase diagram for spinless fermions �see Fig. 4�.

However, in the case of real electrons with spin, we find
that processes �t1

2t2 are absent in the FM state �as for spin-
less fermions� but not in the AF state �as illustrated in Fig.
1�. This results in an effective magnetic exchange �4t1

2t2 /�0
2

which favors the AF relative to the FM state for positive t2
and disfavors the AF state for negative t2. This peculiar effect
is corroborated by DMRG data, where we indeed find AF as
well as FM ground states which depend on t1 and t2. The
phase boundaries of the FM phase obtained here for the
quarter-filled WL are distinct from those obtained for the
t1-t2 Hubbard models driven by large U and Fermi-surface
topology, where ferromagnetism is found whenever the fully
polarized Fermi sea is split in two.27 This is perhaps not that
surprising, as the charge order in the WL is not caused by a
quantum mechanical Fermi-surface instability but by the
strong Coulomb repulsion, which does not depend on the
Fermi surface. Thus, the situation in the WL is very different
from charge and magnetic order driven by Fermi-surface in-
stabilities in the Hubbard model with purely on-site Cou-
lomb repulsion, which was studied extensively in Ref. 16.

Magnetism in the WL is not driven by Fermi-surface in-
stabilities but actually has more in common with the FM
reported for a model of coupled chains with a symmetry-
breaking on-site potential.26 In these coupled chains, charge
order is stabilized by a strong on-site potential, which corre-
sponds to the spontaneous symmetry breaking by long-range
Coulomb repulsion in the case of the WL and is likewise
independent of the Fermi surface. Starting from strong
charge order, we have been able to derive the effective mag-

netic exchange terms using perturbation theory and find the
resulting magnetic energy to be in good agreement with
DMRG data �see Fig. 5�. The most important terms in the
effective exchange Hamiltonian are the AF superexchange
�t2

2 /U involving a doubly occupied site and the kinetic ex-
change term �t1

2t2 /V2. A related FM exchange mechanism
based on strong charge ordering and NN hopping has been
invoked for two-dimensional kagome lattices.50

Since neither charge order nor magnetism are driven by a
Fermi-surface instability but are determined by the Coulomb
interactions, one might not expect that the charge order de-
pends significantly on the magnetic correlations. Indeed,
Wigner lattices are often discussed in terms of spinless fer-
mions, and the magnetic exchange is added only in terms of
a modulated Heisenberg model for the given charge order.
Our calculations show that this picture is too simple. Figures
2 and 3 reveal that magnetic correlations have a very strong
impact indeed on charge order. In fact, the weakening of
charge order in the AF phase at positive t2 is due to the same
processes �t1

2t2 that cause the kinetic exchange. While these
virtual processes cancel in the FM phase, they involve
domain-wall excitations in the AF phase, see the sketch in
Fig. 1. Controlled by the t2 dependent two-DW gap �, the
admixture of virtual DW excitations leads to a reduction in
charge order in the AF state at positive t2, as can be seen in
the phase diagram Fig. 6. Within the FM regime at negative
t2, charge order does not depend on t2. At large negative t2,
however, the antiferromagnetic phase reappears, but now,
surprisingly, the charge order becomes stiffer as �t2� is in-
creased. This peculiar behavior finds its explanation in the t2
dependence of the domain-wall gap � in the AF state.

In summary, we have shown that in Wigner lattices with
next-nearest-neighbor hopping t2, a kinetic exchange mecha-
nism is at work, which favors ferromagnetism for negative
NNN hopping t2 and might explain the spin polarization re-
cently observed in strongly charge-ordered carbon
nanotubes.12 In contrast to the usual superexchange pro-
cesses, which involve virtual excitations across the Mott-
Hubbard gap �U, kinetic exchange arises from virtual tran-
sitions across the Wigner lattice charge gap �0�V�U.
Although Fermi-surface topology describes neither charge
nor magnetic order in the strongly correlated WL, we never-
theless find that quantum interference of electrons is impor-
tant in the WL. In fact, the spin degrees of freedoms have
such a strong impact in the AF regime that charge ordering
cannot be described reliably in terms of spinless fermions
even in the extreme WL regime t1 , �t2��V�U. As this effect
is intimately related to the kinetic exchange mechanism, it
may also be relevant in higher dimensions, e.g., the above-
mentioned kagome systems.
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